Siemens Solar Panels direct from Bullnet

main top
market potential
language
main nav

How big is the photovoltaic market
and how fast is it growing?

Current estimates of worldwide production of solar photovoltaic cells and modules for 1998 are about 120 megawatts (MW), up steadily and dramatically from only 40 MW in 1990. Worldwide sales have been increasing at an average rate of about 15% every year during the last decade, although that growth rate has been slower in some markets and regions but faster in others. We believe that there is a realistic possibility for the market to continue to grow at about a 15% rate into the next decade, At this rate, the world production capacity would be 1000MW by 2010, and photovoltaics could be a $5 Billion industry. These are realistic benchmarks, and show the solar business to be a very exciting market opportunity in the near term.

new chart

Application Growth Forecasts
We turn our attention from general market forecasts to specific application areas to look at how photovoltaic power is used around the world. The application groups of photovoltaic power can be divided into five broad groups:
 

new chart 2 

 

  • Industrial:  This has been the major application area for 30 years, including telecommunications, cathodic protection, telemetry, navigational systems and other unmanned installations in harsh remote sites. The load demands are well known and the requirements for reliable power are the highest.
  • Rural Habitation:  This segment includes applications that are typically inhabited, such as cabins, homes, villages, clinics, schools, farms, as well as individually powered lights and small appliances. The load demands in this segment are not as well defined, and are more flexible.
  • Grid Connected:  These systems are typically multi-kilowatt or megawatt scale systems that are directly connected to an existing power grid network.  Electric power is generated only during daylight hours, and is either consumed at the site of generation (as on commercial buildings) or is fed into the general utility grid system and consumed as a part of the normal power system. Small 1-5 kilowatt rooftop systems can be located on top of individual homes, while larger systems can be associated with commercial or industrial buildings to offset their daytime lighting or air-conditioning loads. Large 100-500 kilowatt systems can be installed along utility feeder lines close to their full capacity to improve power quality and postpone rewiring or installing new larger transformers.
  • Consumer / Indoor:  These products use photovoltaic cells to provide the small amount of power needed for small electronic devices such as watches and calculators, as well as individually powered garden lights, small modules for portable computers and radios, and other applications.
 

 Siemens Solar panels

Solar panel
From solar panel, the free solar panels
• Ten things you may not know about solar panel •Jump to: navigation, search

A photovoltaic (PV) module that is composed of multiple PV cells. Two or more interconnected PV modules create an array.conservs the energy of THE LIGHT . Electrons from these excited atoms form an electric current, which can be used by external devices. Solar panels were in use over one hundred years ago for water heating in homes. Solar panels can also be made with a specially shaped mirror that concentrates light onto a tube of oil. The oil then heats up, and travels through a vat of water, instantly boiling it. The steam created turns a turbine for power.[1]

Contents [hide]
1 History 
2 How Solar Panels Work 
3 See also 
4 References 



solar panels History
The history of solar panels dates back to 1839, when French physicist Antoine César Becquerel discovered the photovoltaic effect during an experiment involving an electrolytic cell that was made up of two metal electrodes placed in an electrolyte solution. Becquerel discovered that when his device was exposed to light the amount of electricity generated increased.[2]

Then in 1883, the first genuine solar cell was built by Charles Fritts. Fritts' solar cell was formed by coating sheets of selenium with a thin layer of gold.[3]

Between 1883 and 1941 many scientists, inventors and companies experimented with solar energy. During these years Clarence Kemp, a Baltimore inventor patented the first commercial water heater powered from solar energy. In addition, Albert Einstein published his thesis on the photoelectric effect and a few years later received the Nobel Prize in Physics for his research. William Bailey, an employee of the Carnegie Steel Company, invented the first solar collector with copper coils contained in an insulated box.[2]

In 1941, Russell Ohl, an American inventor who worked for Bell Laboratories, patented the first silicon solar cell. Ohl’s new invention led Bell Laboratories to produce the first crystalline silicon solar panel in 1954. This solar cell achieved a 4% return on energy conversion. In the years that followed, other scientists continued to improve on this original solar cell and began to produce solar cells with 6% efficiency.[4]

The first large scale use for solar electrical energy was space satellites. With government backing much of the research the US was able to produce a solar cell with twenty percent efficiency by 1980 and by early 2000 had produced solar cells with 24% efficiency. As of November 2007 two companies, Spectrolab and Emcore Photovoltaics dominate world solar cell production and have the ability to produce cells with 28% efficiency.[4]


solar panels How Solar Panels Work
The basic element of solar panels is pure silicon. When stripped of impurities, silicon makes an ideal neutral platform for transmission of electrons. In silicon’s natural state, it carries four electrons, but has room for eight. Therefore silicon has room for four more electrons. If a silicon atom comes in contact with another silicon atom, each receives the other atom's four electrons. Eight electrons satisfy the atoms' needs, this creates a strong bond, but there is no positive or negative charge. This material is used on the plates of solar panels. Combining silicon with other elements that have a positive or negative charge can also create solar panels.[5]

For example, phosphorus has five electrons to offer to other atoms. If silicon and phosphorus are combined chemically, the results are a stable eight electrons with an additional free electron. The silicon does not need the free electron, but it can not leave because it is bonded to the other phosphorous atom. Therefore, this silicon and phosphorus plate is considered to be negatively charged.[5]

A positive charge must also be created in order for electricity to flow. Combining silicon with an element such as boron, which only has three electrons to offer, creates a positive charge. A silicon and boron plate still has one spot available for another electron. Therefore, the plate has a positive charge. The two plates are sandwiched together to make solar panels, with conductive wires running between them.[5]

Photons bombard the silicon/phosphorus atoms when the negative plates of solar cells are pointed at the sun. Eventually, the 9th electron is knocked off the outer ring. Since the positive silicon/boron plate draws it into the open spot on its own outer band, this electron doesn't remain free for long. As the sun's photons break off more electrons, electricity is then generated. When all of the conductive wires draw the free electrons away from the plates, there is enough electricity to power low amperage motors or other electronics, although the electricity generated by one solar cell is not very impressive by itself. When electrons are not used or lost to the air they are returned to the negative plate and the entire process begins again.[5]


solar panels See also
Battery (electricity) 
Energy economics 
Photovoltaic array 
Photovoltaics in transport 
Renewable energy 
Solar power satellite 
Solar lamp 

WIRELESS  CCTV CAMERAS INNOVATIONS  STORE HUNTER WELLIESWIRELESS  CCTV CAMERAS INKJET CARTRIDGES WIRELESS  CCTV CAMERAS INNOVATIONS  STORE HUNTER WELLIES AIR RIFLES AND BB GUNS VELOSOLEX SEEDS   CROSSBOWS MAMOD STEAM ENGINES COP CCTV   VITAMINS  SOFTWARE TONER CARTRIDGES WATCHES PUMPS RADAR DETECTORS HOMECCTV GAMO GUNS    NIGHT VISION  MAGIC AND GAMES HERBAL HIGHS BULL ELECTRICAL FLYBIRD OPTICAL BIKES & SCOOTERS OPTICAL STORE   HYDROPONICS STORE SOFTWARE STORE   VACUUM STORE   AUCTION SITE   PREMIUM BONDS   HOLIDAY HOMES  PMR RADIOS SPY SHOP   STICKY LABELS  TINPLATE TOYS SPANISH GOLF VILLA  SAXOPHONES  MARC JAMES  SUNNYCOTT